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Abstract: In high-dimensional prediction settings, i.e. when p > n, it remains challenging to estimate the test 

performance (e.g. AUC). Conventional K-fold cross-validation and subsampling methods aim to balance 

between enough samples to reliably learn the model and estimate its performance. We show that combining 

estimates from a trajectory of subsample sizes, rendering a learning curve [1], leads to several benefits. Firstly, 

use of a smoothed curve can improve the performance estimate. Secondly, a still growing- or saturating 

learning curve indicates whether or not additional samples will boost the prediction accuracy. Thirdly, 

comparing the trajectories of different learners results in a more complete picture than doing so at one sample 

size only. Fourthly, the learning curve allows computation of a lower confidence bound for the performance. 

Standard cross-validation suffers from a limited amount of test samples, whereas the learning curve finds a 

better trade-off between training- and test sample sizes. This confidence bound is proven to be valid. We show 

coverage results from a simulation, and compare those to a state-of-the-art technique based on asymptotics 

[2]. Finally, we demonstrate the benefits of our approach by applying it to several classifiers of tumor location 

from blood platelet RNAseq data. 
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